
Contents
TWorldMap Reference
Component Installation
Component Limitations
Technical Support
Glossary of Terms Used
Demo Help

Welcome to the new WorldMap Component.    This component serves many needs that may
arise when an application wants to supplement    its interface with a geographical display
without the high costs associated with the GPS accurate map systems currently on the
market.    I believe that this component has a definite place in the geo presentation market.   
This is the first beta release, and I am hoping to release during Mar 96.    Some of the
drawbacks associated with the design of    this component is the points database that
accompanies the component.    This component is 100% delphi and depends on no external
DLLs or other runtime files other than the datafile.    The file WORLDMAP.DAT must be
present with the component when it is distributed in an application.    Additionally, including
the WORLDMAP.DCR in your application allows the ZOOM CURSOR to be used.    This use is
automatic by the component if it is found within the applications resources.   
          I have tried to make the help as consistent as possible with DELPHIs help system and
have added the appropriate footnotes to enable context sensitive help from the design
environment via the F1 key.
I have also added the appropriate jumps into Delphis help for the common Objects.
The help is comprehensive, please use it.

Technical Support
We have attempted to provide the best product possible.    Due to the large number of

hardware/software configurations represented, the component may not always operate
as expected. If you experience any problems with the component we will provide
technical assistance to registered users only for original component and source.    We
will not provide assistance to developers who have modified the source code.    Problems
can be reported in the following ways:

· Email:    donbauer@illuminet.net or ctech@stanleyassoc.com .     
· FAX    703-683-0039    Attention: Component Technologies
· Compuserve    103730, 1061 Don Bauer. We hope to establish a third party forum for the

component, but initially, we will provide support via regular Compuserve mail.

Component Installation
1.    Install the TWorldMap component    in the Delphi IDE:

To install the component, select Options | Install Components from Delphi's menu.   
Click the Add button to open the Add Module dialog box. Click the Browse button to open
the Add Module file selection dialog box.. Select the full drive and directory name path to
the worldmap.dcu    or worldmap.pas file and click the OK button. For example, if you
accepted the default installation directory of c:\wmap, you would select c:\wmap\
worldmap.dcu.

2.    Install the TWorldMap on-line help files:
Copy the file WMAP.HLP    from the \wmap\help directory to your existing \delphi\bin
directory.    Copy the file    WMAP.KWF from the \wmap\help directory to your existing \
delphi\help directory.    From the Windows Program Manager, run the Delphi Help File
Installer program (HelpInst), located in your Delphi Program Group.      Click the Open an
existing HDX file button or select the File and Open... menu options and open file
DELPHI.HDX in your \delphi\help directory.    Click the Add a new keyword file button or
select the Keywords and Add Keyword File... menu options and add file WMAP.KWF,
located in your \delphi\help directory, to the list of keyword files being displayed.    Click
the Compile and save the current HDX file button or select the File and Save menu
options to save and compile the modified HDX file. Depending on your CPU, this process
may take up to 30 seconds. Close the Help File Installer window or select the File and Exit
menu options to terminate the program.

3.    If you plan on using the map component in project directories other than the original
install directory, you will need to add the following statement to you Delphi.ini file.    With
any text editor or the DELPHI IDE, open the file DELPHI.INI in the WINDOWS directory.    At
the end of the file add the following lines:

[TWorldMap]
Mapdir=D:\wmap\data    {or where ever you installed the map data files}

Save and Close the DELPHI.INI file.    This entry will tell each instance of the map component
to look in this directory for the map datafiles.      This prevents the need for multiple copies of
the map data files throughout the system.    If the designated data file resides in the current
project    directory, it will be used first.

Component Limitations
Within the 16-bit environment, this component is very robust.    However, there are some
limitations that are inherent to the 16-bit environment, and should be noted when
developing with this component.

Maximum number of points stored within the component : 16384

Maximum number of lines stored within the component      : 16384

Maximum zoom level : 1 X 2 minutes (1 X 2 miles)

Map Accuracy : The original data is approximately 1:3,000,000,000.    The map is very
accurate down to levels in the 50-100 mile zoom range and reasonably accurate at lower
levels.    This component is not GPS accurate and should not be employed where high
latitude/longitude resolution is a safety consideration.

Other limitations of the component are specific to certain hardware platforms:   

HP Laserjets
A specific hardware problem that has been encountered is the HP Laserjet printers.    When
printing black and white using either the Laserjet III and Laserjet IV drivers, some printing
problems may be encountered.    The sollution to this problem is to ensure that the
background and land brush colors are set to clWhite and the landbrush style is set to
bsClear.    This will allow the proper printing of the map.   

TWorldMap Component
Properties Methods Events Tasks

Unit
WorldMap

Description
The WorldMap Component encapsulates the capabilities of a World Map into the Delphi
environment.    The component is 100% native delphi and depends on no external DLLs or
files other than the map datafile.    The map is drawn from a database of points and drawn as
polygons or line segments on the client area of the window that it is installed upon.    The
data file format is detailed in the help system and the component allows for the changing of
data files at runtime.    In addition to the standard detail levels (Lakes,rivers,countries,states)
the user can add up to 27 additional levels of detail and control their display individually at
runtime.    Here is a ZOOMed example of the Europe from the World Map Demo

Properties
ActiveDraw LakeBrush
Align LakePen
BorderPen LandBrush
CurrentLatitude LandPen
CurrentLongitude Mapfile
CurrentLatitudeStr PointMouseButton
CurrentLongitudeStr PointWidth
DetailOptions ShowPoints
EnablePointClick ShowPointLabels
EnableUpdatedPoints ShowLines
EnableZoom StartNLatitude
GridFont StartSLatitude
GridGapLat StartWLongitude
GridGapLong StartELongitude
GridPen ZoomMouseButton
LabelFont

ActiveDraw Property
Applies to
TWorldMap component.

Declaration
property ActiveDraw : boolean;
Description
This property was included for developers to turn off the MAP at design time.      By Default
the WorldMap will draw itself at design time.    Due to the nature of the component, this can
sometimes
interfere with form design.    This property can also be changed at runtime to prevent the
Map from
drawing.

Align Property

Applies to
TWorldMap component.

Declaration
property Align: TAlign;
Description

The Align property determines how the controls align within their
container (or parent control). These are the possible values:

Value Meaning
__

alNone The component remains where you place it in the form.
This is the default value.

alTop The component moves to the top of the form and
resizes to fill the width of the form. The height of the
component is not affected.

alBottom The component moves to the bottom of the form and
resizes to fill the width of the form. The height of the
component is not affected.

alLeft The component moves to the left side of the form and
resizes to fill the height of the form. The width of the
component is not affected.

alRight The component moves to the right side of the form and
resizes to fill the height of the form. The width of the
component is not affected.

alClient The component resizes to fill the client area of a form.
If a component already occupies part of the client area,
the component resizes to fit within the remaining client
area.

If the form or a component containing other components is resized, the
components realign within the form or control. Using the Align property is useful when you
want a control to stay in    one position on the form, even if the size of the form changes. For
example, you could use a panel component with a various controls on it as a tool palette. By
changing Align to alLeft, you guarantee that the tool palette always remains on the left side
of the form and always equals the client height of the form.

BorderPen Property
Applies to
TWorldMap component.

Declaration
property BorderPen : TPen;

Description
The BorderPen is the pen used to draw the province and state borders.    When the
doShowStates is TRUE state lines are drawn using this pen.

CurrentLatitude Property
Applies to
TWorldMap component.

Declaration
property CurrentLatitude : integer;
Description
The CurrentLatitude property is updated continuously with the cursors current latitude in
minutes within the current Map view if the EnableUpdatedPoints property is TRUE.    A
positive number is North, a negative number is South.    Allowable range of values is 5400 to
-5400.    The CurrentLatitude is runtime and read-only.

CurrentLatitudeStr Property
Applies to
TWorldMap component.

Declaration
property CurrentLatitudeStr : string;
Description
The CurrentLatitudeStr property is updated continuously with the cursors current latitude
within the current Map view if the EnableUpdatedPoints property is TRUE.    The resultant
value is DD-MM-SS (Degrees, Minutes, Seconds).    Allowable range of values is 90-00-00N to
90-00-00S.    The CurrentLatitudeStr property is runtime and read-only.

CurrentLongitude Property
Applies to
TWorldMap component.

Declaration
property CurrentLongitude : integer;
Description
The CurrentLongitude property is updated continuously with the cursors current longitude in
minutes within the current Map view if the EnableUpdatedPoints property is TRUE.    A
positive number is East, a negative number is West.    Allowable range of values is 10800 to -
10800.    The CurrentLongitude property is runtime and read-only.

CurrentLongitudeStr Property
Applies to
TWorldMap component.

Declaration
property CurrentLongitudeStr : string;
Description
The CurrentLongitudeStr property is updated continuously with the cursors current longitude
within the current Map view if the EnableUpdatedPoints property is TRUE.    The resultant
value is DDD-MM-SS (Degrees, Minutes, Seconds).    Allowable range of values is
180-00-00E to 180-00-00W.    Values less than 100 are prefaced with a zero (075-00-00W).   
The CurrentLongitudeStr property is runtime and read-only.

DetailOptions Property
Applies to
TWorldMap component.

Declaration
property DetailOptions : TDetailOptions;

Description
The DetailOptions property determines what details are displayed on the map when it is
drawn.    Since the Map is drawn by a paint message, anytime an option changes, it will
appear when the map repaints.    Options include:

doShowGrid When true, this option draws a Latitude/Longitude grid on the
map at intervals specified by the GridGapLat and GridGapLong
property settings using the Gridpen to draw the lines and the
GridFont to display the labels

doShowStates When true, this option draws the United States state borders
with the BorderPen settings

doShowLakes When true, this option draws lakes with the LakePen, using the
fill settings specified by the LakeBrush settings

doShowRivers When true, this option draws the rivers with the LakePen
settings

doShowOwnerFeatu
res

When true, this option draws owner defined details based upon
the current detail settngs.    User detail settings are managed
by the TurnOnFeature and TurnOffFeature methods.

The different options are completely independant and can be used in any combination,
although, rivers and lakes should be shown together (for asthetic purposes only).

EnablePointClick Property
Applies to
TWorldMap component.

Declaration
property EnablePointClick : boolean;
Description
The EnablePointClick property sets the components behavior when a point is clicked.    If
EnablePointClick is TRUE and a point is clicked the OnPointClicked event is triggered.    If
EnablePointClick is FALSE and a point is clicked the OnPointClicked event will not be
triggered.    This allows use of the mouse on or around points (as in interactive line drawing)
without causing the pointclick event to interrupt the process

EnableUpdatedPoints Property
Applies to
TWorldMap component.

Declaration
property EnableUpdatedPoints : boolean;
Description
When the EnableUpdatedPoints is TRUE the CurrentLatitude,
CurrentLatitudeStr,CurrentLongitude, CurrentLongitudeStr properties are updated    anytime
the mouse is moved within the Map area.    This allows real-time feedback of the mouse
position relative to the latitude and longitude of the cursor on the Map without the developer
having to code them.

EnableZoom Property
Applies to
TWorldMap component.

Declaration
property EnableZoom : boolean;
Description
The EnableZoom property will enable the Zoom capabilities of the component.    After setting
the property to TRUE, using the ZoomMouseButton will allow the stretch rectangle to be
drawn.    When the ZoomMouseButton is released, the enclosed area is zoomed based upon
the area bounded by the rectangle and the EnableZoom property is set to FALSE.    The
EnableZoom property must be set to TRUE before each Zoom operation.    When FALSE,
holding the ZoomMouseButton down will NOT allow a highlighting an area to be Zoomed.

GridFont Property
Applies to
TWorldMap component.

Declaration
property GridFont : TFon t ;

Description
The GridFont property sets the font used when the grid is drawn.    The developer can set
color, size, and font type for the labels displayed at the top and left of the screen when the
doShowGrids option is set to TRUE.

GridGapLat Property
Applies to
TWorldMap component.

Declaration
property GridGapLat : integer;
Description
The GridGapLat sets the interval in minutes of the horizontal grid lines.    The default value is
600 (10 degrees).    This property can be adjusted at runtime to allow finer meshing when
zoom levels are increased.    Valid values are 1-10800 (although either extreme would be
useless).    If the valid values are exceeded, the default is used.    This property applies when
the doShowGrid option is set to TRUE in the DetailOptions property.

GridGapLong Property
Applies to
TWorldMap component.

Declaration
property GridGapLong : integer;
Description
The GridGapLong sets the interval in minutes of the vertical grid lines.    The default value is
900 (15 degrees).    This property can be adjusted at runtime to allow finer meshing when
zoom levels are increased.    Valid values are 1-21600 (although either extreme would be
useless).    If the valid values are exceeded, the default is used. This property applies when
the doShowGrid option is set to TRUE in the DetailOptions property.

GridPen Property
Applies to
TWorldMap component.

Declaration
property GridPen : TPen;

Description
The GridPen is the pen used to draw the lines for the Grid. The user has complete control as
to how the lines are drawn based upon the pen settings.    The grid will show on the map if
the doShowGrids option is set to TRUE.

LabelFont Property
Applies to
TWorldMap component.

Declaration
property LabelFont : TFont;

Description
The LabelFont property sets the font used for labels associated with points on the map.    The
developer can set color, size, and font type for the labels displayed when labels are assigned
and the ShowPointLabels property is set to TRUE.

LakeBrush Property
Applies to
TWorldMap component.

Declaration
property LakeBrush : TBrush;

Description
The LakeBrush sets the way the lakes are filled when drawn.    By setting color and patterns,
lakes can be drawn to user specifications.    The LakeBrush    applies when the doShowLakes
option is set to TRUE and is used whenever the map is drawn.

LakePen Property
Applies to
TWorldMap component.

Declaration
property LakePen : TPen;

Description
The LakePen is the pen used to draw the outlines for the lakes and also to draw the rivers.
The user has complete control as to how the lines are drawn based upon the pen settings.   
The lakes show on the map if the doShowLakes option is set to TRUE and rivers show if the
doShowRivers option is set to TRUE.

LandBrush Property
Applies to
TWorldMap component.

Declaration
property LandBrush : TBrush;
Description
The LandBrush property of the component sets the color and    pattern of the Land Masses
when the Map is drawn. The water color is determined by the color of the client area of the
form.

LandPen Property
Applies to
TWorldMap component.

Declaration
property LandPen : TPen;

Description
The LandPen is the pen used to draw the outlines or more specifically coastlines for the land
masses when the map is drawn. The user has complete control as to how the lines are drawn
based upon the pen settings.    The setting of this pen will determine how the coastline
appears on the map.

Mapfile Property
Applies to
TWorldMap component.

Declaration
property Mapfile: string;
Description
This property allows the component to draw owner supplied data files.    Changing this
property from the default WORLDMAP.DAT will force the map to redraw using the new file.   
This property can be changed at anytime and is available at design time and runtime.    All
features and capabilites of the component work with the owner file.    If the file does not exist
an exception is raised.

PointMouseButton Property
Applies to
TWorldMap component.

Declaration
property PointMouseButton : TMouseButton;
Description
The PointMouseButton property determines which button activates the OnPointClicked event
of the component.    The default button is the RIGHT button.      If there are points assigned to
the map and they are showing, clicking the PointMouseButton
will trigger the OnPointClicked event if assigned.

PointWidth Property
Applies to
TWorldMap component.

Declaration
property PointWidth : integer;
Description
This property determines the width in pixels of the points drawn on the map.    This applies to
the pointstyles     psCircle and psSquare.    This setting is global and ALL points drawn with
the aforementioned pointstyles will draw using this setting.

ShowLines Property
Applies to
TWorldMap component.

Declaration
property ShowLines : boolean;
Description
The Showlines property when TRUE will draw any lines stored within the component anytime
the component is redrawn.    If lines are showing and this property is set to FALSE the map
will redraw without the lines.

ShowPoints Property
Applies to
TWorldMap component.

Declaration
property ShowPoints : boolean;
Description
The ShowPoints property when TRUE will redraw any points stored within the component
anytime the component is redrawn.    Changing this property from FALSE to TRUE at runtime
will draw any stored points.    Changing this property from TRUE to FALSE at    runtime will
invalidate the map and it will redraw clean (without any points).

ShowPointLabels Property
Applies to
TWorldMap component.

Declaration
property ShowPointLabels : boolean;
Description
The ShowPointLabels property when TRUE will draw any labels associated with points stored
within the component anytime the component is drawn.    Changing this property from FALSE
to TRUE at runtime will draw any stored labels.    Changing this property from TRUE to FALSE
at    runtime will invalidate the map and it will redraw the points only (if ShowPoints is TRUE).

StartELongitude Property
Applies to
TWorldMap component.

Declaration
property StartELongitude : longint;
Description
The StartELongtitude property holds the Eastern most Longitude in minutes (RIGHT) of the
current Map view.    This property can be set before the Map is initially displayed to show a
specific region of the Map, or adjusted at runtime to shift the map view when it is redrawn.   
This property is updated anytime the scale of the map is changed, as with the ZOOM
function. The valid range of values for property are 10800 to -10800, the default value is
10800 (180 degrees * 60 minutes per degree).

Note:    Changing this property at runtime will not automatically redraw the map.    This is
done to allow changing all 4 boundary properties without a redraw between each change.

StartNLatitude Property
Applies to
TWorldMap component.

Declaration
property StartNLatitude : longint;
Description
The StartNLatitude property holds the Northern most Latitude    in minutes (TOP) of the
current Map view.    This property can be set before the Map is initially displayed to show a
specific region of the Map, or adjusted at runtime to shift the map view when it is redrawn.   
This property is updated anytime the scale of the map is changed, as with the ZOOM
function.    The valid range of values for this property are 5400 to -5400, the default value is
5400 (90 degrees    N * 60 minutes per degree).   

Note:    Changing this property at runtime will not automatically redraw the map.    This is
done to allow changing all 4 boundary properties without a redraw between each change.

StartSLatitude Property
Applies to
TWorldMap component.

Declaration
property StartSLatitude : longint;
Description
The StartSLatitude property holds the Southern most Latitude in minutes (BOTTOM) of the
current Map view.    This property can be set before the Map is initially displayed to show a
specific region of the Map, or adjusted at runtime to shift the map view when it is redrawn.   
This property is updated anytime the scale of the map is changed, as with the ZOOM
function.      The valid range of values for this property are 5400 to -5400, the default    value
is -5400 (90 degrees S * 60 minutes per degree).

Note:    Changing this property at runtime will not automatically redraw the map.    This is
done to allow changing all 4 boundary properties without a redraw between each change.

StartWLongitude Property
Applies to
TWorldMap component.

Declaration
property StartWLongitude : longint;
Description
The StartWLongtitude property holds the Western most Longitude in minutes (LEFT) of the
current Map view.    This property can be set before the Map is initially displayed to show a
specific region of the Map, or adjusted at runtime to shift the map view when it is redrawn.   
This property is updated anytime the scale of the map is changed, as with the ZOOM
function. The valid range of values for property are 10800 to -10800, the default value is -
10800 (180 degrees * 60 minutes per degree).

Note:    Changing this property at runtime will not automatically redraw the map.    This is
done to allow changing all 4 boundary properties without a redraw between each change.

ZoomMouseButton Property
Applies to
TWorldMap component.

Declaration
property ZoomMouseButton : TMouseButton;
Description
The ZoomMouseButton property determines which button is activates the zoom feature of
the component.    Holding the ZoomMouseButton down and dragging creates a
rectangle ,that, when the button is released will redraw the map ZOOMing the defined
rectangle to the Client area of the form.    The ZoomMouseButton can only be used if the
EnableZoom property is first set to TRUE.This action updates the StartNLatitude,
StartSLatitude, StartWLongitude, StartELongitude properties with the boundaries of the new
map area.

Methods
AddLine GetCanvas
AddLineDec GetLine
AddLineInt GetPoint
AddPoint IsFeatureOn
AddPointDec PrintMap
AddPointInt Plotpoint
ClearLines PlotPointInt
ClearPoints PlotPointDec
ConvertLatLongToXY SaveToFile
ConvertLatLongToXYInt SetCoordinates
ConvertLatLongToXYDec SetCoordinatesInt
ConvertPoint SetCoordinatesDec
ConvertXYtoLatLong TurnOffFeature
DeleteLine TurnOnFeature
DeletePoint UpdateLine
FindPoint UpdatePoint
FixAspectRatio ZoomInByFactor
FullScreen ZoomOutByFactor

AddLine Method
Unit
Worldmap

Declaration
function AddLine(latfrom, longfrom, latto, longto : string; linecolor :
Tcolor; wide : integer; Atag : longint) : integer;

Description
The AddLine method adds a line connecting the latfrom,longfrom point to the latto,longto
point in the color and width specified by the linecolor and wide values.    Once a line is added
to the component, anytime the map redraws and the ShowLines property is TRUE, the lines
will be redrawn.    The function returns the index value of the line in the LineObject list in the
component.    The line can be updated by calling GetLine method and the UpdateLine
method.    The line can be deleted from the list by using the DeleteLine method passing the
index value to the method or all lines can be removed by calling the ClearLines method.

AddLineDec Method
Applies to
TWorldMap component.

Declaration
function AddLineDec(LatFrom,LongFrom,LatTo,LongTo : double;
linecolor:TColor;wide:integer; Atag : longint):integer;

Description
This Method is identical to the AddLine method with one difference:    the latitudes and
longitudes are passed as decimal degrees.    This capability was added due to the large
number of owner data files that are maintianed in the decimal format.    The AddLineDec
method draws a line connecting two points based upon Latitude/Longitude using linecolor as
the color    and wide as the line width in pixels.    The line is stored within the component     
and is    redrawn anytime the map is redrawn if the ShowLines property is TRUE.    The line
algorithm will draw the line accurately if any portion of the line is in the viewport regardless
of the end points.   

AddLineInt Method
Applies to
TWorldMap component.

Declaration
function AddLineInt(iLatFrom,iLongFrom,iLatTo,iLongTo : integer;
linecolor:TColor;wide:integer; Atag:longint):integer;

Description
This Method is identical to the AddLine method with one difference:    the latitudes and
longitudes are passed as integers in minutes.    The AddLineInt method draws a line
connecting two points based upon Latitude/Longitude using linecolor as the color    and wide
as the line width in pixels.    The line is stored within the component      and is    redrawn
anytime the map is redrawn if the ShowLines property is TRUE.    The line algorithm will draw
the line accurately if any portion of the line is in the viewport regardless of the end points.   

AddPoint Method
Applies to
TWorldMap component.

Declaration
function Addpoint(sLat,sLong : string; sLabels : TStringList; fFont : Tfont;
 cColor : TColor; Pstyle : TPointStyle; Bitmap : Tbitmap; tag : longint) :
integer;

Description
The AddPoint method adds points to the components internal object list.    If ShowPoints is
TRUE, the points are drawn on the map using the pointstyle and pointwidth.    If
ShowPointLabels is TRUE, any text in the sLabels stringlist is also displayed first attempting
to use the fFont assigned and if fFont is not assigned, the text is drawn using the
components Font property.    Minimum required (non nil) parameters are sLat,sLong, cColor
and Pstyle.    Tag, if unassigned defaults to 0.    Points can be modified after addition by using
the FindPoint, GetPoint and UpdatePoint methods.

Important Note:      It is important to send nil values in place of unassigned values.

AddPointDec Method
Applies to
TWorldMap component.

Declaration
function AddpointDec(Lat,Long : double; sLabels : TStringList; fFont : Tfont;
cColor : TColor; Pstyle : TPointStyle; Bitmap : Tbitmap; tag : longint) :
integer;

Description
This Method is identical to the AddPoint method with one difference:    the latitude and
longitude are passed as integers in decimal degrees.    The AddPointInt method adds
points to the components internal object list.    If ShowPoints is TRUE, the points are drawn
on the map using the pointstyle and pointwidth.    If ShowPointLabels is TRUE, any text in the
sLabels stringlist is also displayed first attempting to use the fFont assigned and if fFont is
not assigned, the text is drawn using the components LabelFont property.    Minimum
required (non nil) parameters are Lat, Long, cColor, Pstyle.    Tag, if unassigned defaults to 0. 
Points can be modified after addition by using the FindPoint, GetPoint and UpdatePoint
methods.

Important Note:      It is important to send nil values in place of unassigned values.

AddPointInt Method
Applies to
TWorldMap component.

Declaration
function AddpointInt(iLat,iLong : integer; sLabels : TStringList; fFont :
Tfont; cColor : TColor; Pstyle : TPointStyle; Bitmap : Tbitmap; tag : longint)
: integer;

Description
This Method is identical to the AddPoint method with one difference:    the latitude and
longitude are passed as integers in minutes.    The AddPointInt method adds points to the
components internal object list.    If ShowPoints is TRUE, the points are drawn on the map
using the pointstyle and pointwidth.    If ShowPointLabels is TRUE, any text in the sLabels
stringlist is also displayed first attempting to use the fFont assigned and if fFont is not
assigned, the text is drawn using the components Font property.    Minimum required (non
nil) parameters are iLat,iLong, cColor and Pstyle.    Tag, if unassigned, defaults to 0.    Points
can be modified after addition by using the FindPoint, GetPoint and UpdatePoint methods.

Important Note:      It is important to send nil values in place of unassigned values.

ClearLines Method
Unit
Worldmap

Declaration
procedure ClearLines;
Description
The ClearLines method deletes all lines stored within the component.

ClearPoints Method
Applies to
TWorldMap component.

Declaration
procedure ClearPoints;
Description
The ClearPoints method deletes all points stored within the component.

ConvertPoint Method
Applies to
TWorldMap component.

Declaration
procedure Convertpoint(var dlat, dlong : longint; lat, long : string);
Description
The ConvertPoint method converts a latitude/longitude pair into the respective seconds   
value.    Seconds are used internal to the component and provide the highest resolution
possible in calculation.    To get the minutes from the values divide them by 60.      This
method is included for completeness.

ConvertXYtoLatLong Method
Applies to
TWorldMap component.

Declaration
procedure ConvertXYtoLatLong(var lat, long : longint; X, Y : integer);
Description
The ConvertXYtoLatLong method converts an X,Y point pair into the respective
Longitude/Latitude seconds    value.    Seconds are used internal to the component and
provide the highest resolution possible in calculation.        To get the minutes from the values
divide them by 60.      This method is included for completeness.

ConvertLatLongtoXY Method
Applies to
TWorldMap component.

Declaration
function ConvertLatLongtoXY(lat,long:string; var X,Y :integer): boolean;
Description
The ConvertLatLongtoXY method will take any latitude, longitude string argument and
return the screen coordinates X and Y.    The acceptable formats for Latitude are DDMMSSO
or DD-MM-SSO (DD - Degrees, MM - minutes, SS - seconds, O - orientation N)orth or S)outh). 
The acceptable formats for Longitude are DDDMMSSO or DDD-MM-SSO (DDD - Degrees, MM
- minutes, SS - seconds, O - orientation E)ast or W)est).    It is important to ensure that
all unused places are filled with zeros, or an invalid fomat exception will be
raised.    If the Latitude/Longitude pair is not currently within the current viewport, the
method returns FALSE.If the Latitude/Longitude pair is not currently within the current
viewport, the method returns FALSE.    This method can be used to allow the developer to set
bounds for a circle
or other shape on the canvas based upon the latitude/longitude coordinates used for the
Map display.

ConvertLatLongToXYInt Method
Applies to
TWorldMap component.

Declaration
function ConvertLatLongtoXYInt(ilat,ilong:integer; var X,Y :integer): boolean;
Description
This Method is identical to the ConvertLatLongtoXY method will take any latitude, longitude
argument    in minutes and return the screen coordinates X and Y.    The valid range of
values for the Latitude is 5400 to -5400, and the valid range of values for the Longitude is
10800 to -10800.    If the Latitude/Longitude pair is not currently within the current viewport,
the method returns FALSE.    This method can be used in conjuction with the OnPaint method
to allow the developer to set bounds for a circle or other shape and draw the shape on the
canvas relative to the latitude/longitude coordinates used by the Map display.

ConvertLatLongToXYDec
Applies to
TWorldMap component.

Declaration
function ConvertLatLongtoXYDec(ilat,ilong:double; var X,Y :integer): boolean;
Description
This Method is identical to the ConvertLatLongtoXYInt method will take any latitude,
longitude argument    in decimal degrees and return the screen coordinates X and Y.       
The valid range of values for the Latitude is 90.0 to -90.0, and the valid range of values for
the Longitude is 180.0 to -180.0.    If the Latitude/Longitude pair is not currently within the
current viewport, the method returns FALSE.    This method can be used in conjuction with
the OnPaint method to allow the developer to set bounds for a circle or other shape and
draw the shape on the canvas relative to the latitude/longitude coordinates used by the Map
display.

DeleteLine Method
Unit
Worldmap

Declaration
procedure DeleteLine(AIndex:integer);

Description
The delete line method removes the line at the index specified from the LineObject list in the
component.

DeletePoint Method
Applies to
TWorldMap component.

Declaration
procedure DeletePoint(AIndex : integer);
Description
The DeletePoint method will delete the point specified by Aindex from the pointlist stored
within the component.    The next time the map is redrawn the point will not show.

FindPoint Method
Example

Applies to
TWorldMap component.

Declaration
function FindPoint(FindWhat : TFindType; searchstring : string; Startndx :
integer) : integer;

Description
The Findpoint method will search    the list of points stored within the component    based
upon the Find Type and return an index value if the search is successful, or a -1 if the search
fails.    The search is case sensitive.    Possible search fields are Latitude, Longitude in string
format, Labels and Tag value.    The Startndx value determines which index in the Pointlist to
start searching with.

Example
The following example uses a Dialog Box with radio buttons for each find type.    When the
user clicks the OK button, the code is executed.    The search starts with the first object in
the list.

procedure TFindDlg.OKBtnClick(Sender: TObject);
var
 Index : integer;
begin
 with Main.Worldmap1 do begin
 if RBLat.checked then
 Index := FindPoint(ftLat,searchtext.text,0)
 else if RBLong.checked then
 Index := FindPoint(ftLong,searchtext.text,0)
 else if RBLabel.checked then
 Index := FindPoint(ftLabel,searchtext.text,0)
 else if RBTag.checked then
 Index := FindPoint(ftTag,searchtext.text,0);
 if Index <> -1 then begin
 messagedlg('Success!',mtinformation,[mbok],0);
 end else
 messagedlg('No points found',mtInformation,[mbOk],0);
 end;
end;

FixAspectRatio Method
Applies to
TWorldMap component.

Declaration
procedure FixAspectRatio;
Description
The FixAspectRatio is provided for developers to set their own viewports and ensure that the
map draws with the proper perspective.    The method ensures a 2:1 ratio between the delta
Long and delta
Lat.    This method should be called after setting the StartNLatitude, StartSLatitude,
StartWLongitude, and StartELongitude properties and before calling Invalidate to redraw the
map.    This method bulletproofs the setting of the boundary properties.

FullScreen Method
Applies to
TWorldMap component.

Declaration
procedure FullScreen;
Description
The FullScreen method restores the map to full screen and redraws.    To set the map to a
specific size and location, use the StartNLatitude, StartWLongitude, StartSLatitude,
StartELongitude properties and invalidate the Map.    Remember to use FixAspectRatio to set
fix the aspect ratio to 2:1 before invalidating the map.    Failure to do so could result in a
distorted map.

GetCanvas Method
Applies to
TWorldMap component.

Declaration
function GetCanvas : TCanvas;
Description
The GetCanvas Method returns the components canvas.    This gives the developer the
freedom to use the map as a backdrop for other operations requiring direct access to the
Canvas.

Example
This example uses the GetCanvas method to get the canvas for direct line drawing on the
Worldmap.    This function allows the interactive drawing of the line on the canvas.    First
erasing the old line and drawing the new one.    If the isfinal value is true we use the
R2_COPYPEN to draw it on the canvas.

procedure TMapForm.DrawLine(X,Y:integer;IsFinal : boolean);
var
 MyCanvas : TCanvas;
begin
 MyCanvas := Worldmap1.GetCanvas;
 with MyCanvas do begin
 if not isfinal then
 SetROP2(Handle,R2_NOTXORPEN)
 else
 SetROP2(Handle,R2_COPYPEN);
 Pen.Style := pssolid;
 Pen.Color := clRed;
 Pen.width := 1;
 Moveto(FSPt.X,FSPt.Y);
 Lineto(FEPt.X,FEPt.Y);
 Moveto(FSPt.X,FSPt.Y);
 Lineto(X,Y);
 FEPt.x := X;
 FEPt.Y := y;
 end;
end;

GetLine Method
Example

Applies to
TWorldMap component.

Declaration
procedure GetLine(var MyLine : TLineObject; Aindex : integer);
Description
The GetLine method    will fill MyLine object the the line object stored at index    value Aindex.
The calling function must Create the TLineObject before passing the object to the
component.    If the pointer is dirty but not assigned, the Assigned method will not detect an
unassigned pointer and a GPF will result.    If the index value does not exist an exception is
raised.

Example
This example illustrates the proper use of the Getline and Updateline methods.    This
procedure get the line at the index value and changes the color to green with a draw.    This
will cause an immediate update of the line on the screen without causing a map invalidation.

procedure TForm1.ChangePoint(Aindex:integer);
var
 MyLine : TLineObject;
begin
 MyLine := TLineObject.Create;
 try
 With worldmap1 do begin
 GetLine(MyLine, Aindex);
 MyLine.lcolor := clGreen;
 UpdateLine(MyLine,Aindex,True);
 finally
 MyLine.Free;
 end;
end;

GetPoint Method
Applies to
TWorldMap component.

Declaration
procedure GetPoint(MyPoint:TPointObject;Aindex:integer);
Description
The GetPoint method    will fill MyPoint object the the point stored at index Aindex.    The
calling
function must Create the object before passing the TPointObject to the component.    If the
pointer
is dirty but not assigned, the Assigned method will not detect an unassigned pointer and a
GPF will
result.

IsFeatureOn Method
Applies to
TWorldMap component.

Declaration
function IsFeatureOn(Afeature : integer) : boolean;
Description
The IsFeatueOn method returns a boolean value based upon the feature value passed.    The
user defined features can be turned on with TurnOnFeature and turned off with the
TurnOffFeature methods.    The valid range of values for this method are 5 to 32.    This
method only applies to those data files that contain user defined features or details.

PlotPoint Method
Applies to
TWorldMap component.

Declaration
procedure Plotpoint(lat, long, labelstr : string; bColor : TColor);
Description
The PlotPoint method is a quick way to add a point to the screen.    The coordinate values are
sent as strings.    The point is NOT stored within the component and therefore must be
redrawn anytime the map is invalidated.    The labelstr can only be a string not a Tstringlist
as in the AddPoint method.    The bColor determines the color of the circle drawn at the point.

PlotPointInt Method
Applies to
TWorldMap component.

Declaration
procedure PlotpointInt(lat, long:longint; labelstr : string; bColor : TColor);
Description
The PlotPoint method is a quick way to add a point to the screen.    The coordinate values are
sent as minutes.    The point is NOT stored within the component and therefore must be
redrawn anytime the map is invalidated.    The labelstr can only be a string not a Tstringlist
as in the AddPoint method.    The bColor determines the color of the circle drawn at the point.

PlotPointDec Method
Applies to
TWorldMap component.

Declaration
procedure PlotpointDec(lat, long:double; labelstr : string; bColor : TColor);
Description
The PlotPoint method is a quick way to add a point to the screen.    The coordinates are sent
as decimal degrees.    The point is NOT stored within the component and therefore must be
redrawn anytime the map is invalidated.    The labelstr can only be a string not a Tstringlist
as in the AddPoint method.    The bColor determines the color of the circle drawn at the point.

PrintMap Method
Example

Applies to
TWorldMap component.

Declaration
procedure PrintMap(bAddToCurrent:boolean; pxRect:Ptrect; eBkColor:TColor);
Description
The PrintMap method will print the map.    The method will print the CURRENT VIEW of the
map (regardless of the zoom level) including points, labels, lines, lakes, rivers, states, grids   
and any user detail options showing on the map.    The bAddToCurrent parameter allows the
map to be printed on a document    that has already been started.    This allows the map to
be included on documents containing other information.    The pxRect parameter is a pointer
to a rectangle structure containing the destination coordinates on the page to print the map. 
The coordinates are printer page coordinates, NOT screen coordinates.    It is the
developers responsibility to ensure the dimensions of the rect conform to the
aspect ratio of the map.    If pxRect is nil, the map prints on the whole page in Landscape
mode.    The eBkColor parameter specifies which color to use for the background of the map. 
If printing from a form, pass the forms Color property.    To print the map on a black and white
printer, set the LandBrush property to bsClear, and pass clWhite for the background color to
reduce ink usage and keep the map ledgible.

Example
The following code prints the map on a full page with a white background.    Sending pxRect
parameter is as nil causes a full screen print in the Landscape mode.    All showing features
are printed with the current view of the map

 Worldmap1.Print(False, nil, clWhite);

The following    example starts a document,    prints a header, then prints two maps on the
page at different locations.    The pxRect is assigned and sent by reference.

procedure TMapForm.Print1Click(Sender: TObject);
var
 Rect: TRect;
 twidth : word;
 offset : word;
begin
 xRect.Top := 100;
 xRect.Left := 100;
 xRect.Right := 1600;
 xRect.Bottom := 1100;
 Printer.Orientation := poPortrait;
 Printer.Title := 'World Map Demo';
 Printer.BeginDoc;
 offset := (printer.pagewidth - 1000) div 2;
 xrect.left := xrect.left + offset;
 xrect.right := xrect.right + offset;
 twidth := LO(GetTextExtent(printer.canvas.handle,'TWorldmap Component
 Print Demo',30));
 Printer.Canvas.TextOut((Printer.pagewidth - twidth)div 2,5,
 'TWorldmap Component Print Demo');
 Worldmap1.LandBrush.Style := bsClear;
 Worldmap1.PrintMap(True, @xRect, clWhite);
 xRect.Top := 2000;
 xRect.Left := 2000;
 xRect.Right := 3000;
 xRect.Bottom := 2500;
 Worldmap1.PrintMap(True, @xRect, clAqua);
 Printer.Enddoc;
 Worldmap1.LandBrush.Color := clGreen;
 Worldmap1.LandBrush.Style := bsSolid;
end;

SaveToFile Method
Applies to
TWorldMap component.

Declaration
procedure SaveToFile(strFileName: String; iWidth, iHeight: Integer;eBkColor:
Tcolor);

Description
The SaveToFile method creates a bitmap file of the map.    The method will put the CURRENT
VIEW of the map (regardless of the zoom level) including points, labels, lines, lakes, rivers,
states, grids    and any user detail options showing into the bitmap.    The srtFilename
parameter is the name and path of the bitmap file.    The iWidth parameter is the bitmap
dimension in pixels, the iHeight parameter is the bitmap dimension in pixels.    It is the
developers responsibility to ensure the dimensions of the bitmap conform to the
aspect ratio of the map.    The map is drawn to the bitmap specifications.    The eBkColor
parameter determines the background (water) color of the bitmap.   

SetCoordinates Method
Applies to
TWorldMap component.

Declaration
procedure SetCoordinates(lat,long : string; scale : integer);
Description
The SetCoordinates method positions the Map with the center located at the latitude and
longitude specified with the scale determining the size of the display area.      Any format
errors raise an exception.

The latitude format is DDMMSSO [DD=Degrees, MM=Minutes,SS=Seconds,O=Orientation as
N)orth or S)outh], for example 350029N.    For Latitude the range for Degrees is 0-90,
Minutes is 0-59, seconds is 0-59.

The longitude format is DDDMMSSO [DDD=Degrees,
MM=Minutes,SS=Seconds,O=Orientation as E)ast or W)est], for example 0751532E.    For
Longitude the range for Degrees is 0-180, Minutes is 0-59, seconds is 0-59.   

SetCoordinatesInt Method
Applies to
TWorldMap component.

Declaration
procedure SetCoordinatesInt(lat,long : longint; scale : integer);
Description
The SetCoordinatesInt method positions the Map with the center located at the latitude and
longitude specified with the scale determining the size of the display area.    The coordinate
values are sent as minutes

SetCoordinatesDec Method
Applies to
TWorldMap component.

Declaration
procedure SetCoordinatesDec(lat,long : double; scale : integer);
Description
The SetCoordinatesDec method positions the Map with the center located at the latitude
and longitude specified with the scale determining the size of the display area.    The
coordinate values are sent as decimal degrees.

TurnOnFeature Method
Applies to
TWorldMap component.

Declaration
procedure TurnOnFeature(Afeature : integer) : boolean;
Description
The TurnOnFeatue method enables the drawing of a user defined feature based upon the
feature value passed.    The user defined features can be turned off with the TurnOffFeature
method.    To check a particular feature use the IsFeatureOn method.      The valid range of
values for this method are 5 to 31.    This method only applies to those data files that contain
user defined features or details.

TurnOffFeature Method
Applies to
TWorldMap component.

Declaration
procedure TurnOffFeature(Afeature : integer; DoWeDraw : boolean);
Description
The TurnOffFeatue method disables the drawing of a user defined feature based upon the
feature value passed.    If the DoWeDraw value is TRUE the map invalidates and redraws
without the feature.    If it is FALSE the map does not redraw, but when the map repaints the
feature will not appear.    The user defined features can be turned on with the TurnOnFeature
method.    To check a particular features current state use the IsFeatureOn method.      The
valid range of values for this method are 5 to 31.    This method only applies to those data
files that contain user defined features or details.

UpdateLine Method
Applies to
TWorldMap component.

Declaration
procedure UpdateLine(MyLine:TLineObject;Aindex:integer;DoWeDraw : boolean);
Description
The UpdateLine method allows Lines stored in the LineList to be updated.    A call to GetLine
must be executed prior to calling UpdateLine, to get the Line from the component.    All fields
of the Line object can be updated.    If points are moved, the component will recalculate the
internal raw lats and longs. If DoWeDraw is TRUE, the Map will invalidate and redraw
showing the updated line, if false, the map wil not redraw.    This can allow mass updates,
with the last call    to UpdateLine using DoWeDraw set to TRUE, to prevent constant
redrawing of the map.    This method must be used with care as changing all or some of the
fields may yield unexpected results.    I have included it to allow more flexibility from the
developers perspective.

UpdatePoint Method
Applies to
TWorldMap component.

Declaration
procedure UpdatePoint(MyPoint : TpointObject; Aindex : integer; DoWeRedraw :
boolean);

Description
The UpdatePoint method allows points stored in the PointList to be updated.    A call to
GetPointmust be executed prior to calling UpdatePoint, to get the point from the component. 
All fields of the point object can be updated.    Updating myspace will have no effect as it is
recalculated whenever the map is zoomed to readjust the rectangle of space that is live.    If
points are moved, the component will recalculate the internal raw lat and long .    There are
two ways to update the location of a point:   
      1.    Setting the dlat and dlong values of the Object with the appropriate seconds values
AND setting the Lat and Long string values to the empty string. (The update method will
recalculate the string lat and long values)
      2.    Set the Lat and Long values to the new position in the proper string format.    The
acceptable formats for Latitude are DDMMSSO or DD-MM-SSO (DD - Degrees, MM - minutes,
SS - seconds, O - orientation N)orth or S)outh).    The acceptable formats for Longitude are
DDDMMSSO or DDD-MM-SSO (DDD - Degrees, MM - minutes, SS - seconds, O - orientation
E)ast or W)est).

If DoWeDraw is TRUE, the Map will invalidate and redraw showing the updated point, if false,
the map wil not redraw.    This can allow mass updates, with the last call    to UpdatePoint
using DoWeDraw set to TRUE, to prevent constant redrawing of the map.    This method must
be used with care as changing all or some of the fields may yield unexpected results.    I
have included it to allow more flexibility from the developers perspective.

ZoomInByFactor Method
Applies to
TWorldMap component.

Declaration
procedure procedure ZoomInByFactor(lat,long : longint; factor : integer);
Description
The ZoomInByFactor method allow the map to be zoomed by a fixed amount with the center
of the map located at the lat, long specified.    The factor determines the extent to which the
map is zoomed.    Factor must be a multiple of 2, except for a special case of using 1 to
effectively pan the map.    The factor process is cumulative, that is, calling the method with a
zoom factor of 2, and subsequently calling it with a zoom factor of 4 will yield a total zoom
factor of 8.    Conversly calling the method with a zoom factor of 2, and calling the method
again with a zoom factor of 2 will yield a total zoom factor of only 4.    If the zoom area is
near the edge of the map, the center is adjusted accordingly.

ZoomOutByFactor Method
Applies to
TWorldMap component.

Declaration
procedure procedure ZoomOutByFactor(factor : integer);
Description
The ZoomOutByFactor method will zoom the map out keeping the current center of the map.
If the method is called with a zoom factor that results in an area greater than the world map
dimensions, the map will default to full screen.

Scale
The scale property determines the physical dimensions of the map viewing area.    In nautical
terms a
minute represents 1 mile, since a Dregree is 60 minutes it is also 60 miles.    Specifying a
scale of 600 miles would yield a display of 10 degrees wide by 5 degrees high. (Remember
the 2:1 aspect ratio).

Events
         

OnClick OnPaint
OnDblClick OnPointChange
OnLineFilter OnPointClicked       
OnMapMouseDown OnPointFilter
OnMapMouseMove OnZoom
OnMapMouseUp

OnClick Event
Applies to
TWorldMap component.

Declaration
property    OnClick: TNotifyEvent;

Description

The OnClick event occurs when the user clicks the component. Typically, this is when the
user presses and releases the primary mouse button with the mouse pointer over the
component.    This will only occur when the EnableZoom property is FALSE.

OnDblClick Event
Applies to
TWorldMap component.

Declaration
property    OnDblClick: TNotifyEvent;

Description
The OnDblClick event occurs when the user double-clicks the mouse button while the mouse
pointer is over the component.    This will only occur when the EnableZoom property is
FALSE.

OnLineFilter Event
Example

Applies to
TWorldMap component.

Declaration
property OnLineFilter : TLineFilterEvent;
Description
The OnLineFilter event is called passing each line in the Linelist to the function for
evaluation.    If the result is TRUE, the line is drawn on the map each time the lines are
drawn.    Caution should be used when coding the filter functions, since each line is passed
through it every time the map is drawn and ShowLines is TRUE.

Example
The follwing example tests each line passed in against the condition of dlatto value < 0.   
With this event assigned, only lines with a dlatto value less than 0 will be drawn whenever
the lines are drawn.

function TForm1.WorldMap1LineFilter(Sender: TObject;
 Curline: TLineObject): Boolean;
begin
 result := false;
 If Curline.dlatto < 0 then result := 1;
end;

OnMapMouseDown Event
Applies to
TWorldMap component.

Declaration
property OnMapMouseDown : TMapMouseDownEvent;
Description
If assigned, the OnMapMouseDown will be triggered whenever the mouse is depressed
within the map client area.    In addition to the traditional mouse parameters the latitude and
longitude in seconds are passed with this event.    Seconds are used to allow the highest
possible accuracy relative to the map.

OnMapMouseMove Event
Applies to
TWorldMap component.

Declaration
property OnMapMouseMove : TMapMouseMoveEvent
Description
If assigned, the OnMapMouseMove will be triggered whenever the mouse is moved within
the map client area.    In addition to the traditional mouse parameters the latitude and
longitude in seconds are passed with this event.    Seconds are used to allow the highest
possible accuracy relative to the map.

OnMapMouseUp Event
Applies to
TWorldMap component.

Declaration
property OnMapMouseUp : TMapMouseUpEvent;
Description
If assigned, the OnMapMouseUp will be triggered whenever the mouse is released within the
map client area.    In addition to the traditional mouse parameters the latitude and longitude
in seconds are passed with this event.    Seconds are used to allow the highest possible
accuracy relative to the map.

OnPaint Event
Applies to
TWorldMap component.

Declaration
property OnPaint: TNotifyEvent;

Description
The OnPaint event occurs when Windows requires the form or paint box to paint, such as
when the form or paint box receives focus or becomes visible when it wasn't previously. Your
application can use this event to draw on the canvas of the form or paint box.

OnPointChange Event
Example

Applies to
TWorldMap component.

Declaration
property    OnPointChange: TNotifyEvent;

Description
The OnPointChange event occurs whenever the mouse moves within the Map area (Client
Area) of the Form.    The Event will only be triggered if the EnableUpdatePoints property is
TRUE. This event allows handling to be associated with the movement of the mouse relative
to the map (e.g. Keeping updated point positions in a panel showing cursor
latitude/longitude).

Example
The following example uses the PointChange event to update two edit fields on a panel with
the map form.    Each time the mouse moves within the component the edit fields are
updated showing the mouse cursors relative Lat and Long based upon the map.

procedure TMain.WorldMap1PointChange(Sender: TObject);
begin
 Curlat.text := Worldmap1.CurrentLatitudeStr;
 Curlong.text := Worldmap1.CurrentLongitudestr;
end;

OnPointClicked Event
Example

Applies to
TWorldMap component.

Declaration
property    OnPointClicked : TPointClickEvent;

Description
If assigned, the OnPointClicked will be triggered whenever a point on the map is clicked.   
The hotspot area of the point object is the actual point or the picture displayed.    To disable
the OnPointClicked event    to allow mouse use around points, set the EnablePointClick
property to FALSE:

Example
OnPointClicked event is only triggered if a point on the map is clicked and the
EnablePointClick property is TRUE.    When called the event sends the point that was clicked
to the calling unit.    The following code shows the 4 strings associated with the clicked point.
The #13 is a carriage return.

procedure TMapMain.WorldMap1PointClicked(Sender: TObject; Curpoint:
 TPointObject; AIndex: Integer);
begin
 messagedlg('Current Point is '+inttostr(Aindex)+#13+
 Curpoint.labels.strings[0]+#13+
 Curpoint.labels.strings[1]+#13+
 Curpoint.labels.strings[2]+#13+
 Curpoint.labels.strings[3],mtInformation,[mbOk],0);
end;

OnPointFilter Event
Example

Applies to
TWorldMap component.

Declaration
property OnPointFilter : TPointFilterEvent;
Description
The OnPointFilter event is called passing each point in the pointlist to the function for
evaluation.    If the result is TRUE, the point is drawn on the map each time the points are
drawn.    Caution should be used when coding the filter functions, since each point is passed
through it every time the map is drawn and ShowPoints is TRUE.

Example
The follwing example tests each point passed in against the condition of tag value > 1000.   
With this event assigned, only points with a tag value greater than 1000 will be drawn
whenever the points are drawn.

function TForm1.WorldMap1PointFilter(Sender: TObject;
 Curpoint: TPointObject): Boolean;
begin
 Result := false;
 if Curpoint.tag > 1000 then result := 1;
end;

OnZoom Event
Applies to
TWorldMap component.

Declaration
property OnZoom: TNotifyEvent;
Description
The OnZoom event specifies which event handler should execute when the component is
Zoomed in or out.    This event happens after the map has been zoomed or restored to full
screen.

TLineFilterEvent Type
Applies to
TWorldMap component.

Declaration
 TLineFilterEvent = function(Sender: TObject; Curline : TLineObject):boolean
of object;
Description
The TLineFilterEvent is a custom event designed to allow lines to be filtered before they are
drawn.    The custom event passes the each line object in the linelist to the calling program
allowing the developer to create custom filtering code and returns TRUE or FALSE.    If the
event returns true, the line is drawn each time lines are drawn on the map.    This event does
not require the BDE or any database connectivity.

TMapMouseMoveEvent Type
Unit
Worldmap

Declaration
TMapMouseMoveEvent = procedure(Sender: Tobject; Shift: TShiftState; X, Y:
integer;Lat,Long : longint) of object;

Description
The TMapMouseMoveEvent is a custom event designed to allow the latitude and longitude to
be passed (in seconds) along with the traditional mouse data to the components parent to
obtain information relative to the map coordinate system when the mouse is moved.

TMapMouseUpEvent Type
Unit
Worldmap

Declaration
TMapMouseUpEvent = procedure(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer;Lat,Long : longint) of object;

Description
The TMapMouseUpEvent is a custom event designed to allow the latitude and longitude to
be passed (in seconds) along with the traditional mouse data to the components parent to
obtain information relative to the map coordinate system when the mouse is released.

TMapMouseDownEvent Type
Unit
Worldmap

Declaration
TMapMouseDownEvent = procedure(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer;Lat,Long : longint) of object;

Description
The TMapMouseDownEvent is a custom event designed to allow the latitude and longitude
to be passed (in seconds) along with the traditional mouse data to the components parent
to obtain information relative to the map coordinate system when the mouse is down.

TPointClickEvent Type
Unit
Worldmap

Declaration
 TPointClickEvent = procedure(Sender : TObject; Curpoint : TPointObject;
AIndex:integer) of object;
Description
The TPointClickEvent type is a custom event designed to allow a point object to be passed to
the forms parent to obtain information about a point when the point is clicked.

TPointFilterEvent Type
Applies to
TWorldMap component.

Declaration
 TPointFilterEvent = function(Sender: TObject; CurPoint :
TPointObject):boolean of object;
Description
The TPointFilterEvent is a custom event designed to allow points to be filtered before they
are drawn.    The custom event passes each point object in the pointlist    to the calling
program allowing the developer to create custom filtering code and returns TRUE or FALSE.   
If the event returns TRUE, the point is drawn each time points are drawn on the map.    This
event does not require the BDE or any database connectivity.

TPointObject Type
Unit
Worldmap

Declaration
TPointObject = class(TObject)
 Labels : TStringList;
 Picture : TBitmap;
 Color : TColor;
 Font : TFont;
 PointType : TPointStyle;
 Lat : string;
 Long : string;
 Dlat : longint;
 Dlong : longint;
 MySpace : Trect;
 Data : Pointer;
 Tag : longint;
public
 Constructor Create;
 Destructor Destroy;
end;
Description
The TPointObject is a custom object that holds information related to points stored within the
component in a Tlist Object.    The points can be added using AddPoint, deleted with
DeletePoint, and updated using the GetPoint and UpdatePoint.    FindPoint will find a point
based upon the FindType and the search string.    All list operations are managed by
exception handling internal to the component.    The data pointer allows user data to be
attached to the point object.    Data can only be attached via the GetPoint and UpdatePoint
Methods.    The constructor ensures that all values are properly initialized.    Default values
for the TPointObject are : dlat, dlong, tag, myspace 0, Labels - nil, Picture - nil, pointtype -
psCircle, Font - created, color - clRed, Lat, Long - .    The Destructor ensures that all addional
allocations are properly freed prior to calling the Objects destroy method.

TLineObject Type
Unit
Worldmap

Declaration
TLineObject = class(TObject)
 dlatfrom : longint;
 dlatto : longint;
 dlongfrom : longint;
 dlongto : longint;
 lcolor : TColor;
 lwidth : integer;
 Data : Pointer;
 tag : longint;
 public
 Constructor Create;
 end;
Description
The TLineObject is a custom object used to store line information in the component.    The
constructor initializes the values in the object to their default values: latfrom, longfrom,
latto, longto default to 0, lcolor defaults to clBlue, lwidth defaults to 2, Data defaults to nil,   
tag defaults to 0.

TFindType
Unit
Worldmap

Declaration
TFindType = (ftLabel,ftTag,ftLat,ftLong);

Description
FindType determines which part of a TPointObject is searched when the FindPoint method is
called.
ftLabel searches the TStringList , ftTag searches based upon a Tag value, ftLat searches
based upon the Latitude, ftLong searches based upon the Longitude.

TPointStyle Type
Unit
Worldmap

Declaration
TPointStyle = (psCircle,psSquare,psNone,psLineto,psPicture);

Description
Pointstyle determines what kind of point is used when points are drawn on the map.    Using
the UpdatePoint method, pointstyle can be changed based upon changing conditions.   
Pointstyles other than psPicture and Psnone will use the color stored inside the TPointObject
when drawing the point.

TDetailOptions Type
Unit
Worldmap

Declaration
TDetailOption = (doShowStates, doShowLakes, doShowRivers, doShowGrid,
doShowOwnerFeatures);

Description
The TDetailOptions type is a set of valid options that can be used for map display.    The
different elements are explained in the DetailOptions property.

ZOOM
The WorldMap has built in ZOOM    Capabilities.    When the EnableZoom property is set to
TRUE and the appropriate ZoomMouseButton is selected, holding the zoom button down and
dragging, creates a rectangle on the Map.

When the button is released, the Map redraws with the rectangle as the new area for the
map.

Although this capability is built into the map component, the same thing can be
accomplished by resetting the StartNLatitude, StartSLatitude, StartWLongitude,
StartELongitude properties to the desired display area, and Invalidating the canvas of the
Client area containing the map.   

Important points
      1.    Then Map as designed is a Mercator Projection. The system expects a 2:1 aspect ratio
between Longitude and Latitude respectively in order to draw the Map in the proper
perspective.    Failure to maintain the 2:1 ratio will result in a distorted map!.     
When using the built in ZOOM capabilities of the component, the component will always
ensure a 2:1 ratio.    For those who wish to set their own map bounds, the method
FixAspectRatio will update the points to ensure a 2:1 ratio.    Calling this method before
redrawing the Map will ensure a proper perspective on the Map.    Implementing the Zoom
feature programatically will allow the developer to set view regions and switch between

them (i.e. Europe, North America, etc).    Using the ZOOM feature does not disable or prevent
the programmer from programatically setting Map bounds.

Tasks
Creating Owner Data Files
Drawing Directly On the Map Canvas
Hooking Database Events to PointClicked Events
Attaching User Data to Points and Lines

Creating Owner Data Files

The Map data file consists of two main parts; the header and the data.    The header record is
in the following format:

 HeaderRecord = record
 ident : string[29];
 detailpos : array [1..32] of longint;
 details : longint;
 end;

· ident
 The ident member contains the text    TWorldMap Component data file. The   
component will check for this value when it loads the map file.    If it does not exist an
exception will be raised.

· detailpos : array [1..32] of longint;
The component will support up to 32 levels of detail of which the first 4 are
reserved.    Level 1 = Country boundaries, 2 = State Boundaries, 3 = Lakes polygon
data, 4 = River Data.    Values 5 through 31 are left for user defined detail levels.   
Each array index contains the fileposition of the start of that particular detail.    This
is done for performance reasons, since each level of detail can be handled
independantly this    prevent scanning the entire file each time a detial is drawn.    At a
minimum the data file must contain the land mass data.    In order to be consistent,
the land mass data should be in POLYGON format.    Polygon format    means that the
points representing a particular land mass should be organized in sush a manner that
they can be drawn consecutively either clockwise or counterclockwise.    Windows
takes the points and draws them successively.    The following example show how to
organize points to properly draw a polygon.   

If your points are orgainzed in a top down manner (i.e top point, left point, right point
etc..) then it will look like garbage when it is drawn and could potentially blow the
GDI.    How the polygons are stored will be discussed later.      It is important that when
creating map data files that all values of this array are initially set to 0.    The system
depends on non-used indices being set to 0.

· details : longint;
This member is a flag telling the system how many levels of detial are included in the
file.   

The data consists of two parts;    a polyrecord containing details about the point data and the

point data itself.    The polyrecord is a data header record.    It contains drawing information
about the particular detail, including a description, number of data points, a flag, brush
color, brush style, pen color and pen style. The polyrecord declaration is as follows:

 Polyrecord = record
 description : string[40];
 pcnt : longint;
 flag : longint;
 bcolor : TColor;
 bstyle : TBrushStyle;
 pcolor : TColor;
 pstyle : TPenSTyle;
 end;

· description : string[40];
The    description field is included for ease of maintenance.    It is not used in any way
within the component, but it allows the developer to associate meaningful
descriptions to the data that make file editing much easier.    Future releases will allow
searches based upon the description.

· pcnt : longint;
The    pcnt field is the point count for data that follows this record in the file.    This is
one of the most important parts of the polyrecord.    This should be the number of
points, not the zero based value.    In other words DO NOT subtract 1 from the
total!    Remember that it is a longint.    Attempting to mainpulate this value within
Delphi can cause weird things to happen if you try and mix integers with longints.

· flag : longint;
This field is the second most important part of the polyrecord.    The first bit (starting
from the right) indicates if the point data is to be drawn as a polygon or as line
segments.    For example, in the map data file, the land masses and lakes are drawn
as polygons and the rivers, countries, and states are drawn as line segments.    For
polygons the rightmost bit (the ones place)    is set to 0, for line segments
the bit is set to 1.    To accomplish this in Delphi, examine the following code
example:

 {if we are using polygon data, set the flag to 0 initially}
 prec.flag := 0;
 {If we want line segments then we set the flag to 1}
 prec.flag := 1;
end;

Additionally, the bit corresponding to the respective level of detail must be 1.    For
example, if this record was a level 7 detail then bit 7 must be 1.    To accomplish this
in Delphi, examine the following code example which includes initiallizing the flag:

procedure SetFlag(var prec: polyrecord; polydata: boolean; detaillevel :
integer);
var
 flagvalue : longint;
begin
 flagvalue := 1;
 {if we are using polygon data, set the flag to 0 initially}
 if polydata then
 prec.flag := 0

 {If we want line segments then we set the flag to 1}
 else
 prec.flag := 1;

 {detaillevel is passed as a 7. To set bit 7 to the on value}
 flagvalue := flagvalue shl detaillevel; {shift left by 7 bits}
 {Now set the flag in the polyrecord}
 prec.flag := prec.flag or flagvalue;{OR the value with the flag}
end;

The flag is important for the system to determine when it is done drawing the detail
of the selected level.

· bcolor : TColor;
The bcolor field is of type Tcolor.    This value determines which brush color will be
used when drawing the detail.    For levels 0 thorough 4 the LandBrush, LandPen,
BorderPen, LakeBrush, Lake Pen are used and these values are overridden.    For
levels 5 through 31 these values are set when the particular level draws.

· bstyle : TBrushStyle;
The bstyle field is of type TBrushStyle.    This value determines which brush style will

be used when drawing the detail.    For levels 0 thorough 4 the LandBrush,
LandPen, BorderPen, LakeBrush, Lake Pen are used and these values are
overridden.    For levels 5 through 31 these values are set when the particular
level draws.

· pcolor : Tcolor;
The pcolor field is of type Tcolor.    This value determines which pen color will be used

when drawing the detail.    For levels 0 thorough 4 the LandBrush, LandPen,
BorderPen, LakeBrush, Lake Pen are used and these values are overridden.    For
levels 5 through 31 these values are set when the particular level draws.

· pstyle : TPenSTyle;
The pstyle field is of type TPenStyle.    This value determines which pen style will be
used when drawing the detail.    For levels 0 thorough 4 the LandBrush, LandPen,
BorderPen, LakeBrush, Lake Pen are used and these values are overridden.    For
levels 5 through 31 these values are set when the particular level draws.

Following the polyrecord in the file is the point data.    The point data, when read into the
map component is read into a point array.    Important things to remember about the point
array.    The largest size supported by the worldmap component is 15000 points.    This
limitation is imposed by the compiler for that omnipresent 64k barrier.    I have worked with
larger arrays dynamically, but the code gets very messy.    Currently no polygons in the
mapfile exceed this limitation. (The WIN95 version will not have to worry about this
problem).

 xypoints : array [0..15000] of Tpoint;
The points are stored in the minutes format. (180 degrees corresponds to 10800
minutes).    This format was adopted due to ease of use.    The X value corresponds to
Longitude, the Y value corresponds to Latitude.    The allowable ranges for Longitude   

are
-10800 (180W)    to 10800 (180E).    The allowable ranges for Latitude are 5400 (90N)
to -5400 (90S).

The    following code segment is one way of loading the map file into memory for
manipulation

Here are the declarations used:

 HeaderRecord = record
 ident : string[29]; {TWorldMap Component data file}
 detailpos : array [1..32] of longint;
 details : longint; {shows number of current detail levels}
 end;
 Polyrecord = record
 description : string[40];
 pcnt : longint;
 flag : longint;
 bcolor : TColor;
 bstyle : TBrushStyle;
 pcolor : TColor;
 pstyle : TPenSTyle;
 end;
 TPolyObject = class(TObject)
 description : string[40];
 maxnlat : integer;
 maxslat : integer;
 maxElong : integer;
 maxWlong : integer;
 pcnt : longint;
 flag : longint;
 fpos : longint;
 bcolor : TColor;
 bstyle : TBrushStyle;
 pcolor : TColor;
 pstyle : TPenSTyle;
 ptarray : ^Tpoint;
 end;
 PTPolyObject = ^TPolyObject;

The Tpolyobject is slightly different from the polyrecord in that it maintaints the file position
of the data segment and also the data itself in the form of a dynamic array.    By loading this
into a list it can be manipulated and edited one data segment at a time. The following code
loads the File into the list.    FWorldDat is a TMemoryStream.    Polylist is a Tlist.    XYPOINTS is
a static    array declared for use in indexing individual points.    This was done for simplicity
due to the complex nature of declarations and calculations of dynamic array indexing
(compiling is a pain in the butt if everything is not perfect).    This code in NOT complete but
illustrates a way to load the file into memory for manipulation.

 FWorldDat.Loadfromfile(Opendialog1.filename);
 eofile := FWorlddat.size;
 FWorldDat.Seek(0,0);
 FWorldDat.read(head,sizeof(headerrecord));
 while not Done do begin
 New(mpoly);

 Mpoly^ := TPolyObject.Create;
 Mpoly^.maxnlat := 0;
 Mpoly^.maxslat := 0;
 Mpoly^.maxelong := 0;
 Mpoly^.maxwlong := 0;
 Mpoly^.fpos := FWorldDat.position;
 pointcnt := 0;
 FWorldDat.read(prec,sizeof(polyrecord));
 if FWorldDat.position = eofile then begin
 Done := true;
 Dispose(mpoly);
 end else begin
 Getmem(Mpoly^.ptarray,sizeof(Tpoint) * longint(prec.pcnt));
 MPoly^.pcnt := prec.pcnt;
 FWorldDat.Read(Mpoly^.ptarray^,sizeof(Tpoint)* longint(prec.pcnt));
 Mpoly^.flag := prec.flag;
 Mpoly^.description := prec.description;
 Mpoly^.bcolor := prec.bcolor;
 Mpoly^.bstyle := prec.bstyle;
 Mpoly^.pcolor := prec.pcolor;
 Mpoly^.pstyle := prec.pstyle;
 with Mpoly^ do begin
 hmemcpy(@xypoints,@ptarray^,prec.pcnt);
 for i := 0 to prec.pcnt do begin
 with xypoints[i] do begin
 if x < 0 then begin
 if x < maxwlong then maxwlong := x;
 end else begin
 if x > maxelong then maxelong := x;
 end;
 if y < 0 then begin
 if y < maxslat then maxslat := y;
 end else begin
 if y > maxnlat then maxnlat := y;
 end;
 end;
 end;
 end;
 Polylist.Add(Mpoly^);
 end;
 end;

To write the file back out to disk uses a similar process.    Here is the method I
used to recreate the new map data file:

procedure TMapEditor.RecreateFile(filename : string);
var
 F : file;
 Hrec : HeaderRecord;
 prec : polyrecord;
 myflag : longint;
 i : integer;
 st,cou,la,ri : boolean;
begin
 myflag := 1;
 st := false;

 cou := false;
 la := false;
 ri := false;
 Assignfile(F,filename);
 rewrite(F,1);

{Initialize the header record and write it to the beginning of the file}

 Hrec.ident := 'TWorldMap Component data file';
 Hrec.details := 30; {This is a short cut for the bits 2-4 being on}
 for i := 1 to 32 do Hrec.detailpos[i] := 0;
 Blockwrite(F,Hrec,sizeof(headerrecord));

{Iterate through the list and write out each group of data}

 for i := 0 to Polylist.count - 1 do begin
 with TPolyobject(polylist.Items[i]) do begin

          {For each FIRST occurrence of a new level of detail, reocrd the fileposition in
the header   
          record.    Notice the hard coded values for the reserved levels of detil in the
header record}

        if (description = 'STATE BOUNDARIES') and (not st) then begin
 Hrec.detailpos[1] := Filepos(F);
 st := true;
 end else if (description = 'COUNTRY BOUNDARIES') and (not cou) then
begin
 Hrec.detailpos[2] := Filepos(F);
 cou := true;
 end else if (description = 'LAKES') and (not la) then begin
 Hrec.detailpos[3] := Filepos(F);
 la := true;
 end else if (description = 'RIVERS') and (not ri) then begin
 Hrec.detailpos[4] := Filepos(F);
 ri := true;
 end;

          {Copy the data into the polyrecord from the polyobject }

            prec.description := description;
 prec.pcnt := pcnt;
 prec.flag := flag;
 prec.bcolor := bcolor;
 prec.bstyle := bstyle;
 prec.pcolor := pcolor;
 prec.pstyle := pstyle;
 Blockwrite(F,prec,sizeof(polyrecord));
 Blockwrite(F,ptarray^,sizeof(tpoint) * longint(pcnt));
 end;
 end;
 ri := false;

{The following    code was used to create 2 user levels of detail using rivers and
lakes for my data}

    for i := 0 to Polylist.count - 1 do begin
 with TPolyobject(polylist.Items[i]) do begin
 if description <> 'RIVERS' then continue;
 if (description = 'RIVERS') and (not ri) then begin
 Hrec.detailpos[5] := Filepos(F);
 ri := true;
 end;
 prec.description := description;
 prec.pcnt := pcnt;
 prec.flag := flag or (myflag shl 5);
 prec.bcolor := bcolor;
 prec.bstyle := bstyle;
 prec.pcolor := clRed;
 prec.pstyle := pstyle;
 Blockwrite(F,prec,sizeof(polyrecord));
 Blockwrite(F,ptarray^,sizeof(tpoint) * longint(pcnt));
 end;
 end;
 ri := false;
 for i := 0 to Polylist.count - 1 do begin
 with TPolyobject(polylist.Items[i]) do begin
 if description <> 'LAKES' then continue;
 if (description = 'LAKES') and (not ri) then begin
 Hrec.detailpos[6] := Filepos(F);
 ri := true;
 end;
 prec.description := description;
 prec.pcnt := pcnt;
 prec.flag := flag or (myflag shl 6);
 prec.bcolor := bcolor;
 prec.bstyle := bstyle;
 prec.pcolor := clRed;
 prec.pstyle := pstyle;
 Blockwrite(F,prec,sizeof(polyrecord));
 Blockwrite(F,ptarray^,sizeof(tpoint) * longint(pcnt));
 end;
 end;

{Finally we seek the beginning and rewrite out the header record with the
updated data}

 Seek(F,0);
 Blockwrite(F,Hrec,sizeof(headerrecord));
 Closefile(F);
end;

Important things to remember:
1.    Initialize headerrecord detailpos to all zeros before starting.
2.    Ensure that the index you use in the headerrecord detail position is the same bit that
you turn on for the flag of that same detail level.
3.    Remember to set the ones bit to 0 for polygon data and 1 for line segment data.
4.    If you are not using alternate reserved levels of detail (i.e. you have no river, lake,state
or country data in your file) then set the empty areas with the fileposition of the last data in
the file.    For example if you have polygon data and then have all user defined elements
such as roads or county boundaries your header record would be:

detailpos[1] := 0 {file position of the end of the polygon data the start of the country data}
detailpos[2] := 0    {repeat the process.. this way the file will skip this area since the
component
detailpos[3] := 0    {draws from 1 to 2, 2 to 3 etc}
detailpos[4] := 0
detailpos[5] := 143255    {your data starts here with the 5th bit set in the flag plus a 0 or 1
depending on             
detailpos[6] := 283255 {data type of polygon or line segment, 6 can be here or can be a 0}
detailpos[6] := 0;

This is a small example of the owner data files.    A more robust example will be included
with the final release.   

Drawing Directly On the Map Canvas

Another extensible capability of the TWorldMap component is the ability to directly draw on
the map canvas.    This allows the programmer to use the map as a backdrop for a wide
range of    custom drawing operations.    The following example illustrates how to allow
interactive line drawing on the map canvas to graphically connect two points on the map
and generate a line that is stored in the component.    The drawing operation is
accomplished by depressing the mouse and the start point, dragging to the end point and
releasing the mouse button.    The operation is broken into 4 steps:    capturing the point of
start, capturing the drawing operation, capturing the endpoint, and adding the new line to
the component.    To accomplish this we need some class variables to keep our status as we
move through the process.

 FSPt : Tpoint; {start point}
 FEPt : Tpoint; {end point}
 FbDrawingEnabled : boolean; {flag says we are ready
 to draw}
 FbDrawingLine : boolean; {flag says we are drawing}

At the core of the interactive drawing is the DrawLine procedure.    The drawline procedure
does all of the work.    If the IsFinal parameter is false we use NOTXOR to erase the last line
and redraw the new line.    When IsFinal is true, we copy the line to the canvas.

procedure TMapForm.DrawLine(X,Y:integer;IsFinal : boolean);
var
 MyCanvas : TCanvas;
begin
 MyCanvas := Worldmap1.GetCanvas;
 with MyCanvas do begin
 if not isfinal then
 { use to Raster Op codes to make the line eraseable}
 SetROP2(Handle,R2_NOTXORPEN)
 else
 SetROP2(Handle,R2_COPYPEN);
 Pen.Style := pssolid;
 Pen.Color := clRed;
 Pen.width := 1;
 Moveto(FSPt.X,FSPt.Y);
 Lineto(FEPt.X,FEPt.Y);
 Moveto(FSPt.X,FSPt.Y);
 Lineto(X,Y);
 FEPt.x := X;
 FEPt.Y := y;
 end;
end;
Once we have decided to start the drawing process, we need to set the fbDrawingEnabled
class global variable to true.    This tells us that when we depress the mouse button we are
starting our line drawing operation. We change the cursor to indicate we are ready to draw,
set the FbDrawingEnabled to true, and turn off our pointclick events to prevent any
interference.    Here is the menu event:

procedure TMapForm.DrawLine1Click(Sender: TObject);
begin
 Worldmap1.cursor := crPencil;

 Worldmap1.EnablePointClick := false;
 FbDrawingEnabled := true;
end;
The next step in directly drawing on the map is to capture the starting point.    We use the
OnMapMouseDown event to start this process.    We check the FbDrawingEnabled, and if
true, we prepare to draw the line.    We turn off drawing enabled to prevent resetting our
starting points, set the FbDrawingLine variable to true to indicate that we are now in the
process of drawing, and    initialize our start and end points with the current mouse position.

procedure TMapForm.WorldMap1MapMouseDown(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer; Lat,
 Long: Longint);
begin
 if FbDrawingEnabled then begin
 Worldmap1.showlines:=true;
 FbDrawingEnabled := false;
 FbDrawingLine := true;
 FSPt.X := x;
 FSPt.y :=y;
 FEPt.x := x;
 FEPt.y := y;
 end;
end;
In order to track the line drawing operation we need to capture any mouse movements while
the FbDrawingLine is true.    To accomplish this, the MapMouseMove event is used.    Note the
FALSE parameter sent to DrawLine.    This keeps the line erasable until we are ready to
finalize it.

procedure TMapForm.WorldMap1MapMouseMove(Sender: TObject;
 Shift: TShiftState; X, Y: Integer; Lat, Long: Longint);
begin
 if FbDrawingLine then begin
 DrawLine(x,y,FALSE);
 end;
end;
Finally, when we are ready to record our line, we need to capture the MapMouseUp event to
finish drawing the line.    We call Drawline with IsFinal set to true to finalize it.    We call the
convert methods to get the lat/long of our stored X,Y points and add the line to the
component.    Note the div 60 in the AddLine method, because the convert method returns
seconds.

procedure TMapForm.WorldMap1MapMouseUp(Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer; Lat, Long: Longint);
var
 ilatf,ilongf,ilatt,ilongt : longint;
begin
 if FbDrawingLine then begin
 DrawLine(x,y,TRUE);
 FbDrawingLine := false;
 Worldmap1.cursor := crCross;
 With worldmap1 do begin
 ConvertXYtoLatLong(ilatf,ilongf,FSPt.X,FSPt.y);
 ConvertXYtoLatLong(ilatt,ilongt,FEPt.X,FEPt.y);
 AddLineInt(ilatf div 60,ilongf div 60,ilatt div

 60,ilongt div 60,clRed,2,0);
 EnablePointClick := true;
 Showlines := true;
 end;
 ShowLines1.checked := true;
 end;
end;
This is only one way of directly drawing a line on the canvas.    Other methods might include
using the shiftstate, or a different mouse button instead of a global class variable.   
Additionally, the developer can create their own featurelist and manage drawing it with the
OnPaint method of the Map component depending on changing conditions.

Hooking Database Events to PointClicked Events

One of the powerful features of the TWorldMap component is the ability to click on points
shown on the map and take actions based upon the event.    One of the more common uses
would be to show minimal information on the map with the ability to display detail upon
request.    To accomplish this, a unique or identifying piece of information must be stored
with the point to allow a parameterized query to be executed based upon the unique
information.    The following example uses the tag value as the unique value.    The data used
for this example has a unique record id.    When the points are added to the component, the
tag value is set to the record id.    When an OnPointClicked event is triggered, the tag value
is used to retrieve additional information from the database.    Since the entire point is
passed to the event, any data element stored within the point can be used to take an action. 
Using different shapes and colors would allow be a way to determine what action to take on
the click event.

procedure TMapForm.WorldMap1PointClicked(Sender: TObject; Curpoint:
TPointObject; AIndex: Integer);
var
 workstr : string;
 I : integer;
 cwd : string;
begin
 screen.cursor := crHourglass;
 GetDir(0,cwd);
 workstr:= 'Current Point ID is '+
 inttostr(Curpoint.tag) +#13;
 workstr:= workstr+Curpoint.labels.strings[0]+#13;
 try
 With Clickqry do begin
 databasename := cwd;
 params[0].AsInteger := Curpoint.tag;
 prepare;
 open;
 Workstr := workstr +
 Fieldbyname('prov_name').Asstring+#13;
 WorkStr := workstr +
 Fieldbyname('country_name').Asstring;
 end;
 screen.cursor := crDefault;
 messagedlg(workstr,mtInformation,[mbOk],0);
 finally
 Clickqry.close;
 Screen.cursor := crDefault
 end;
end;

Attaching User Data to Points and Lines

Another powerful feature associated with the lines and points is the data pointer.    The data
pointer allow user data to be attached to each point.    Since the pointer is generic, any
object can be attached, as well as normal pascal data structures.    The following example is
a simple illustration of attaching a record to a point.
A simple record and a pointer to that record is declared in the type section.

mydata = record
 anInt : integer;
 AString : string
end;
Pmydata = ^mydata;

In the method used to update the point, a new pointer is created, and the record contents
are filled and assigned.    The record is then attached to the data field.
var
 MyPoint : TPointObject;
 pmd : pmydata;
begin
 MyPoint := TPointObject.Create;
 try
 Worldmap1.GetPoint(MyLine,4);
 New(pmd);
 pmd^.anInt := 3;
 pmd^.AString := Test String;
 Mypoint.data := Pointer(pmd);
 MyPoint.pointstyle := psSquare;
 MyPoint.color := clgreen;
 WorldMap1.UpdatePoint(Mypoint,4,FALSE);
 finally
 MyPoint.Free;
 end;
end;

Glossary

coordinates, origin of
          Points in a system of coordinates which serves as a zero point in computing the
system's elements or in prescribing its use.

Degree
          Unit of measurement for map system.    1 Degree = 60 miles.

grid
          Network of uniformly spaced parallel lines intersecting at right angles. When
superimposed on a map, it usually carries the name of the projection used for the map- that
is, Lambert grid, transverse Mercator grid, universal transverse Mercator grid.    The
TWorldMap component uses a Mercator Grid.

latitude
          Angular distance, in degrees, minutes, and seconds of a point north or south of the
Equator.

longitude
          Angular distance, in degrees, minutes, and seconds, of a point east or west of the
Greenwich meridian or Prime meridian.

minute
          A unit of measurement used in map systems, 1 minute = 1 mile.

prime meridian
          Meridian of longitude 0 degrees, used as the origin for measurements of longitude. The
meridian of Greenwich, England, is the internationally accepted prime meridian on most
charts. However, local or national prime meridians are occasionally used.
scale
          The scale determines the physical dimensions of the map viewing area.    In nautical
terms a minute represents 1 mile, since a Degree is 60 minutes it is also 60 miles.   
Specifying a scale of 600 miles would yield a display of 10 degrees wide by 5 degrees high.
(Remember the 2:1 aspect ratio).

second
          A second is a unit of measurement used in map systems.    ! second    = 1/60th of a mile.

Demo Help
The demo menu and tool bar attempts to demonstrate some of the built in capabilities
of the component.    To get more information about an area move the cursor over it.    If the
cursor
turns into a hand, it is a link to information about that area.

TWorldMap Reference
Component Installation
Component Limitations
Technical Support
Glossary of Terms Used

Map Scale
The map scale shows the width of the current map
view in minutes (nautical miles).    This field is
updated whenever the map is zoomed in or out.   
This value is calculated using the difference
between the StartELongitude and StartWLongitude
properties

Show Rivers
The show rivers button toggles (turns off and on) the
rivers detail option of the map.    Click this
button to turn on the rivers, or if the rivers are
showing, click this button to turn the rivers off.

Zoom In By Factor
The zoom in by factor button uses the components
ZoomInByFactor Method to zoom the map by a
factor of 2.    After clicking the button, the cursor will
change to the magnifying glass.    Click the point on
the map to become the center of the newly zoomed
area.    This takes effect regardless of the current map
view.    If you have used the Zoom In button and previously
zoomed the map, the factor will increase the current zoom
factor by 2.

Zoom Out By Factor
The zoom out by factor button uses the
components ZoomOutByFactor Method to
zoom the map out by a factor of 2.    The
button automatically zooms the map out
maintaining the current center.

Zoom Factor
This field shows the current zoom factor of the map.   

Show Grid
The show Grid button toggles (turns off and on) the
Grid detail option of the map.    Click this
button to turn on the Grid, or if the Grid is
showing, click this button to turn the Grid off.   
When the Grid is showing the menu item
Adjust Grid allows you to change the spacing
of the Grid lines

Show States/Provinces
The show states button toggles (turns off and on) the
states detail option of the map.    Click this
button to turn on the states/provinces, or if the
states/provinces are showing, click this button to
turn them off.

Show Lakes
The show lakes button toggles (turns off and on) the
lakes detail option of the map.    Click this
button to turn on the lakes, or if the lakes are
showing, click this button to turn the lakes off.

Show Points
The show points option demonstrates the
components capability to store and show points.
If there are no points loaded, the demo loads
the national capitals table using the AddPointDec
method. The Demo uses a modulo number to
generate the point colors, and displays the points.
If the points are showing the points are turned
off by setting    the ShowPoints property to false.
The colors are used to demonstrate the user
defined OnPointFilter event.

Show Lines
The show lines option demonstrates the
components capability to store and show
lines.    The ShowLines property controls the
showing of lines if there are lines stored within
the component.    To add a line to the component, you can
use the menu option DrawLine to interactively
draw on the canvas or use the Plotline
menu option to enter the coordinates
of the line.

Related Topics
AddLine
DeleteLine
ClearLines
GetLine
UpdateLine

Show Labels
The Show Labels option toggles
(turns on and off) the labels associated
with the points loaded in the component.
If points are loaded, labels can be shown
with or without the points.    This option
uses the ShowPointLabels property

Related Topics
ShowPoints
AddPoints
ClearPoints

Latitude
This edit box demonstrates one of the built
in capabilities of the component.    Whenever
the EnableUpdatedPoints property is true,
the CurrentLatitudeStr, CurrentLatitude,
CurrentLongitudeStr and CurrentLongitude
properties are continuously updated.      The
OnPointChange event is triggered each time
the cursor is moved within the map area.      Keeping
the edit box current with the mouse position takes
one line of code.

Longitude
This edit box demonstrates one of the built
in capabilities of the component.    Whenever
the EnableUpdatedPoints property is true,
the CurrentLatitudeStr, CurrentLatitude,
CurrentLongitudeStr and CurrentLongitude
properties are continuously updated.      The
OnPointChange event is triggered each time
the cursor is moved within the map area.      Keeping
the edit box current with the mouse position takes
one line of code.

Zoom In
The Zoom In option demonstrates another built
in capability of the component.    After clicking the
Zoom In option, the EnableZoom property is set
to true.    While the component is in this state, the
cursor changes into the zoom cursor (Magnifying
Glass) when the cursor is moved over the
map.    Holding the left mouse button down and
dragging creates a zoom rectangle.    When the mouse
is released, the map zooms to the area enclosed by the
rectangle.    Upon completion of this operation the
enablezoom property is reset to false.

Full Screen
This option returns the map to full screen
using the FullScreen method.
Setting the map to full screen
updates the the StartELongitude, StartWLongitude,
StartNLatitude,StartSLatitude properties.

MapOps Options

TWorldMap Reference
Component Installation
Component Limitations
Technical Support
Glossary of Terms Used

Adjust Grid...
The Adjust Grid is an interface to
the GridGapLat and GridGapLong
properties which determine the
space between the vertical
and horizontal lines on the map.
Changing these properties at
runtime allow the grid to provide
higher resolution as the map
is zoomed.

Related Topics
DetailOptions

Set Coordinates...
The SetCoordinates Dialog allows
the user to use the SetCoordinates
Method of the component.    This method
provides another way to zoom the map
and center it at a point.    When executed
the map adjusts to the new scale
centered around the lat / long passed.

Related Topics
SetCoordinatesDec
SetCoordinatesInt

Change Map Data File
The Change Map Data File option allows a
new map file to be loaded into the component
at runtime by changing the Mapfile property.
The map automatically reloads the new file
when it attempts to draw.    This allows user
created data files with varying levels of detail
to be created and shown on the fly by the
map component.    The release version of
the map component comes with three
data files, WorldMapL1.dat, WorldmapL2.dat
and WorldMapL3.dat.    Level 1 is the highest
detail and level 3 is the lowest.

Center Map At Cursor
The Center Map at Cursor option
demonstrates a special use for the
ZoomInByFactor Method.    By pasing
a 1 as the factor, the method will
recenter the map on the passed
coordinates.    This allows the map
to be panned in any direction.

Related Topics
ZoomOutByFactor

Print Demo
This options demonstrates the
components capability to print
the map at a chosen location
multiple times on the same
page with different attributes.
This option uses the PrintMap
method

Related Topics
SaveToFile

Print Full Page Map
This option uses one line of code
to print the map on a full page.    This
option also uses the PrintMap method

Related Topics
SaveToFile

Create Bitmap File
This option displays a dialog box
allowing the user to specify the
dimensions of a bitmap file that
the component creates.    This BMP
file can be used in any program that
use bitmaps.    This option uses the
SaveToFile method

Related Topics
PrintMap

Points Options

TWorldMap Reference
Component Installation
Component Limitations
Technical Support
Glossary of Terms Used

Plot National Capitals
If there are no points loaded, the demo loads
the national capitals table using the AddPointDec
method. The Demo uses a modulo number to
generate the point colors, and displays the points.

Related Topics
AddPoint
AddPointInt
DeletePoint
ClearPoints
GetPoint
UpdatePoint

Find Point
The find point demonstrates the
components built in capability
to search the internal pointlist
for a particular value in a point
object.    The fields of the pointobject
correspond to a Findtype, and the
FindPoint Method executes the
search

Related Topics
GetPoint
UpdatePoint

Clear Points
The Clear Points option
deletes all points stored
within the component using
the Clearpoints method

Related Topics
DeletePoint

Show Colored Points
The Show Red Points, Show Yellow
Points, Show Blue Points and
Show All Points options demonstrate
the OnPointFilter capability of the
component.    After plotting the
National Capitals, the points
can be selectively shown by
clicking on the menu color
option.

Lines Options

TWorldMap Reference
Component Installation
Component Limitations
Technical Support
Glossary of Terms Used

Draw Line
Draw line demonstrates the ability to draw
directly on the map canvas and record information
relative to the latitude and longitude of the map.
Selecting this option turns the cursor into a pencil.
Move the mouse cursor to where you would like
a line to begin.      Hold the mousebutton down and
drag the cursor to the location you would like the line to
end and release the button.    A line has now been added
to the components internal line list.    The line will
show each time the map is redrawn if the showlines
property is true.

Related Topics
OnMapMouseMove OnMapMouseDown
GetCanvas OnPaint
OnMapMouseUp AddLine
Drawing Directly on the Map Canvas

Plot Line
The plot line is a more conventional
way to add a line to the map.    This
dialog allow you to enter a
starting point and an ending point
for a line.    The line is added to the
components line list and is shown
anytime the map is drawn.

Related Topics
AddLine
AddLineInt
AddLineDec

Clear Lines
The Clear Lines option deletes any previously
added lines, using the components ClearLines
Method

Related Topics
DeleteLine

